Display a WinForms

Splash

Technology Toolbox)

vy

J VB.NET

o C#

1 SQL Server 2000
J ASP.NET

J XML

1 VB6

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these resources.

Download

VS0304QA Download the code for
this article. Itincludes the
SplashScreen class.

Discuss

VS0304QA_D Discuss this article in
the C# forum.

Read More

VS0304QA_T Read this article
online.

VSEP011129JL_T “System
Programming: Object Serialization
and Persistence” by Juval Lowy

VS03020A_T Q&A, “Call WinForms
on Multiple Threads,” by Juval
Léwy and Karl E. Peterson

VS0201GS_T Getting Started,
“Understand Visual Inheritance,”
by Stan Schultes

48

Screen

Q: Display a WinForms
Splash Screen

My application takes a while to start up. I want
to display a splash screen (as Visual Studio NET
and Office applications do) while the applica-
tion continues loading in the background. The
toolbox has no such control. How do I imple-
ment it?

A:

The code accompanying this column contains
the SplashScreen class (download the code from
the VSM Web site; see the Go Online box for
details):

public class SplashScreen
{
public SplashScreen(Bitmap splash);

plashDemo.cs [D

W Debug

by Juval Lowy

public void Close();

SplashScreen’s constructor accepts the bitmap
to display. The Close method closes the splash
screen. You typically use SplashScreen in the
method thathandlesyour form’s Load event (see
the resulting splash screen in Figure 1):

private void OnLoad(object
sender,EventArgs e)

Bitmap splashImage;
splashImage = new
Bitmap("Splash.bmp");

SplashScreen splashScreen;
splashScreen = new

W‘ labell. Text

e

lgh Solution 'SplashScre:
=] @ SplashScreen
- () References
@- ([bin
& | obj
@ App.ico
[#] Assemblyinfo.cs
@ Splash.bmp

@ la
= yfg’\v\/'chrmsEx
- (&) References
@ AppSingleton.cs
[#] Assemblyinfo.cs
SplashScreen.cs
%] UtiLes

Q“\G', ¥

§ Debug

)ashUemo.cs»l SplashSeresn.cs [Design] | Utilcs | SplashScreen.cs

| 2] Thiesds

‘SplashScreen.exe': Loaded 'c:\winZk\assembly\gac\accessibility\l.0.3300. 0__b0O3£5£7f11d50a3a\accessibility.dll’, No symk
‘SplashScreen.exe': Loaded 'c:\data\seminars\master)demos) frameworks\splashscreen\bin\debug\winformsex.dll',6 Symbols lo:¢

Figure 1 Create a Splash Screen. \When you start the demo application, you see the splash screen,
followed by the application’s main form. The splash screen is a top-most window, rendered by a
dedicated thread. As a result, it repaints itself even if you swap another application into context.

VISUAL STUDIO MAGAZINE -« APRIL 2003 + www.visualstudi g

com

SplashScreen(splashImage);

//Do some lengthy operations, then:
splashScreen.Close();
Activate();

After you close the splash screen, you activate your form in order to
bring it to the foreground and give it focus.

You can use any bitmap as a splash screen. You can create the
bitmap from a BMP or JPG file by constructing a new bitmap object
around it:

Bitmap splashImage;
splashImage = new Bitmap("Splash.bmp");

Or, you can use an image you load from the form’s resources:
using System.Resources;

ResourceManager resources;

resources = new

ResourceManager (typeof(MyForm));

Bitmap splashImage;

SplashForm System ‘Windows.Forms.Farm

SplashForm
False
FixedSingle

| CenterScreen

tartPosition
et
ophdost

True

U-Pl‘dbelt‘ies‘

Figure 2 Set Visual Properties for the Splash Form and the Pic-
ture Box. You can use the visual designer to achieve almost every-
thing you need from a visual standpoint to transform a standard form
to a splash screen. Use SplashForm's and m_SplashPictureBox’s Prop-
erties windows to set new values that determine control box, border,
start position, caption, position, cursor, sizing, and docking.

VISUAL STUDIO MAGAZINE + APRIL 2003 + wWww.vi udiomagazine.com

SplashImage =
(Bitmap) (resources.GetObject(
"SplashImage"))

There’s more to implementing a splash screen than meets the
eye. It relies on some nifty WinForms features, and it involves some
interesting design issues that apply in other WinForms situations.
The splash screen is actually a WinForms form called SplashForm.
You can use the WinForms visual designer to make most of the
changes required to transform a default form into a splash screen—
a testament to how versatile, yet easy, WinForms are. In this
implementation, you add a single control to the form—a simple
picture box called m_SplashPictureBox.

You don’t know the splash image’s size at compile time, because
it’s a runtime parameter, yet the picture box needs to size itself up
to it. You can do this easily by setting the m_SplashPictureBox’s
SizeMode property to AutoSize. Next, you must align the picture
box at the top-left corner of the form. You can do this by setting
m_SplashPictureBox’s Dock property to Fill. This snaps it to the
top-left corner. It'll expand toward the right-bottom corner at run
time to fill its containing form, because the size mode is set to
AutoSize. Finally, set m_SplashPictureBox’s Cursor property to
AppStarting (an hourglass plus a pointer), so that if the user moves
the mouse over the splash screen, he or she is aware that the
application is starting up.

The splash form itself shouldn’t display any control-box buttons
(the close, minimize, and maximize boxes), nor should it have a
caption bar. Use the visual designer to set SplashForm’s ControlBox
property to False; this removes the control box. Clear the Text
property in the designer to remove the caption bar.

The splash screen’s border is next. It should be a single line—not

& C# o Implement the SplashScreen Class

public class SplashScreen
{
public SplashScreen(Bitmap splash)
{
m_SplashImage = splash;
ThreadStart threadStart = new
ThreadStart(Show) ;
m_WorkerThread = new Thread(threadStart);
m_WorkerThread.Start();
}
void Show()
{
m_SplashForm = new SplashForm(m_SplashImage);
m_SplashForm.ShowDialog();
}
public void Close()
{
m_SplashForm.HideSplash = true;
m_WorkerThread.Join();
}
Bitmap m_SplashImage;
SplashForm m_SplashForm;
Thread m_WorkerThread;

}

Listing 1 SplashScreen'’s constructor creates a thread to call the Show
method, which displays the SplashForm form. Show passes Splash-
Form the image to splash, then calls ShowDialog to display the form.
The Close method signals SplashForm to hide and waits for the worker
thread to terminate.

49

the default sizable border style—so set the form’s FormBorderStyle
property to FixedSingle. Set the TopMost property to True to have
to splash screen always at the top of the z-order (the order in which
Windows displays windows on the desktop). A splash screen should
always be at the center of the screen. Fortunately, you can set the
StartPosition property to CenterScreen, and WinForms takes the
window’s size into account automatically and centers it. Figure 2
shows the Properties windows of both SplashForm and m_Splash-
PictureBox, summarizing the properties you need to set and the
new values.

Next, write some code to size up the splash screen. SplashForm’s
constructor accepts the image to splash and assigns it to the picture
box’s image:
internal class SplashForm : Form
{

PictureBox m_SplashPictureBox;

public SplashForm(Bitmap

splashImage)

InitializeComponent();
m_SplashPictureBox.Image =
splashImage;
ClientSize =
m_SplashPictureBox.Size;
}
//Rest of the implementation

Note that you must set SplashForm’s client size to that of the picture
box, which sizes itselfup to the image’s size automatically. The result
is that the SplashForm now displays the image in the picture box
exactly, because the picture box is aligned at the top-left corner of
the form.

You can’t display SplashForm on the same thread you use to
load the application, because that thread is busy loading the app
and will never get around to displaying or repainting the splash
screen. Instead, have SplashScreen create a worker thread to
display SplashForm (see Listing 1). The worker thread calls the
Show method, which creates the SplashForm object and calls its
ShowDialog method:

void Show()
{
m_SplashForm =
SplashForm(m_SplashImage);
m_SplashForm.ShowDialog();

new

ShowDialog displays the form and starts pumping Windows mes-
sages to it. The splash screen runs on its own thread, so that thread
is doing the message processing—not the main application thread
that’s busy loading the application.

The next challenge is finding a way for the main application to
close the splash screen. The easiest way would be to signal the worker
thread to close the form—except the thread method (Show) is busy
pumping messages in the form’s message loop (the ShowDialog
method) and isn’t available to check a flag or an event. The solution

50

is simple—use Windows Timers. Use the designer to add a Timer
control to the form, and set its Interval property to some adequate
value, such as 500 milliseconds. The Timer class is actually based on
the WM_TIMER message, so the timer’s Tick event is Windows-
message—driven. The worker thread pumps that message to the
splash screen, where it checks whether it needs to close the splash
screen, because the main application has finished loading. The
SplashForm class provides the Boolean property HideSplash, which
SplashScreen’s Close method sets:

public void Close()

{
m_SplashForm.HideSplash = true;
m_WorkerThread.Join();

HideSplash provides access to the m_HideSplash Boolean member
variable of SplashForm. m_HideSplash is being accessed by mul-
tiple threads, so HideSplash needs to provide access to m_HideSplash
in a thread-safe access by locking the SplashForm:

public bool HideSplash
{
get
{
Tock(this){
return m_HideSplash;

}
set
{
lock(this) i
m_HideSplash = value;

SplashForm handles the timer’s Tick event in the OnTick
method:

private void OnTick(object
sender,EventArgs e)

if(HideSplash == true)

{
m_Timer.Enabled = false;
Close();

If the HideSplash property is set to true (because the SplashScreen
Close method was called), OnTick disables the timer and closes the
SplashForm. It all works together like this: The main form starts
loading, and it displays the splash screen on a different thread. The
main form then continues with the application startup. The splash
screen checks periodically (using the timer) whether it should close.
The main form calls SplashForm’s Close method when it’s done
loading. The Close method sets HideSplash to true and calls Join on

APRIL 2003 + www.visualstudiomagazine.com

VISUAL STUDIO MAGAZINE «

the worker thread, waiting for it to terminate. This blocks the main
form, so it doesn’t display itself as long as the splash screen is
displayed. The next time the timer ticks, it checks the value of
HideSplash. It cancels the timer and closes SplashForm, because
HideSplash is set to true. This causes the ShowDialog method
(called in the Show method of SplashScreen) to return, and then
Show returns. The thread is terminated once Show returns, because
Show is the worker thread’s thread method. At this point, the call
to Join in the Close method of SplashScreen returns. The Close
method returns control to the main form, which now displays itself.

e Allow Serializable Types to Contain
Nonserializable Members

I have a serializable class that contains a database connection as a
member variable. I get an exception when I try to serialize the class,
because the connection isn’t serializable. If I mark the connection as
nonserializable, then I can serialize—but I can’t use the object after
deserialization, because the connection member is invalid. What
can [do?

A:

When you use the Serializable attribute to mark a class for serializa-
tion, .NET insists thatall its member variables be serializable as well,
and throws an exception of type SerializationException during
serialization if it discovers a nonserializable member. However, the
class might have a member that can’t be serialized. This type doesn’t
have the Serializable attribute and prevents the containing type from
being serialized. Commonly, this nonserializable member is a
reference type that requires some special initialization. The solution
to this problem requires marking such a member as nonserializable
and taking a custom step to initialize it during deserialization.

You must mark the member with the NonSerialized field
attribute to allow a serializable type to contain a nonserializable type
as a member variable:

public class MyOtherClass
{i=3)

[Serializablel
public class MyClass
{
[NonSerialized]
MyOtherClass m_Obj;
/* Methods and properties */

When .NET serializes a member variable, it reflects it first to see
whether it has the NonSerialized attribute; if it does, .NET ignores
thevariableand simply skips overit. However, when .NET deserializes
the object, it initializes the nonserializable member variable to the
default value for that type (a null for all reference types). Then it’s
up to you to provide code to initialize the variable to its correct value.
To thatend, the object must know when it’s being deserialized. You
must implement the [DeserializationCallback interface, defined in
the System.Runtime.Serialization namespace:

public interface
IDeserializationCallback

VISUAL STUDIO MAGAZINE + APRIL 2003 - www.visualstudiomn

void OnDeserialization(object
sender);

NET calls IDeserializationCallback’s single OnDeserialization()
method after NET has finished deserializing the object, allowing it
to perform the required custom initialization steps. You can ignore
the sender parameter because .NET always sets it to null. This code
demonstrates how you can perform custom serialization by imple-
menting [DeserializationCallback:

using System.Runtime.Serialization;

[Serializable]
public class MyClass :
IDeserializationCallback

[NonSerialized]
IDbConnection m_Connection;

public void OnDeserialization(object
sender)

Debug.Assert(m_Connection ==
null);
m_Connection = new
Sql1Connection();
m_Connection.ConnectionString =
"data
source= ... ";
m_Connection.Open();
}

/* Qther members */

The MyClass class in the preceding code has a database connection
as a member variable. The connection object (SqlConnection) isn’t
a serializable type, so you mark it with the NonSerialized attribute.
MyClass creates a new connection object in its implementation of
OnDeserialization(), because the connection member is set to its
default value of null after deserialization. MyClass then initializes
the connection object by providing it with a connection string, and
opens it. vsm

Juval Léwy is a software architect and the principal of IDesign, a
consulting and training company focused on .NET design and .NET
migration. Juval is Microsoft's regional director for the Silicon Valley,
working with Microsoft on helping the industry adopt .NET. His latest
book is Programming .NET Components (O'Reilly & Associates). Juval
speaks frequently at software-development conferences. Contact
him at www.idesign.net.

Additional Resources

Programming .NET Components by Juval Lowy [0'Reilly &
Associates, 2003, ISBN: 0596003471]

51

